

DPP - 3

Video Solution on Website:-

Video Solution on YouTube:-

https://youtu.be/qHmLjKStLF4

https://physicsaholics.com/home/courseDetails/47

https://physicsaholics.com/note/notesDetalis/48

Written Solution on Website:-

Q 1. The amount of radiation emitted by a perfectly black body is proportional to
(a) Temperature
(b) Fourth root of temperature
(c) Fourth power of temperature
(d) Source of temperature

Q 2. If the emission rate of blackbody at $0{ }^{\circ} \mathrm{C}$ is R, then the rate of emission at $273^{\circ} \mathrm{C}$ is
(a) 2 R
(b) 4 R
(c) $8 R$
(d) 16 R

Q 3. Two bodies of same shape and having emissivity 0.1 and 0.9 respectively radiate same energy per second. The ratio of their temperature is :
(a) $\sqrt{3}: 1$
(b) $1: \sqrt{3}$
(c) $3: 1$
(d) $1: 3$

Q 4. The radiation emitted by a star A is 10000 times that of the sun. If the surface temperature of the sun and star A are 6000 K and 2000 K , respectively, the ratio of the radii of the star A and the sun is
(a) $300: 1$
(b) $600: 1$
(c) $900: 1$
(d) $1200: 1$

Q 5. Two black metallic spheres of radius 4 m , at 2000 K and 1 m at 4000 K will have ratio of energy radiation as
(a) $1: 1$
(b) $4: 1$
(c) $1: 4$
(d) $2: 1$

Q 6. The rate of cooling at 600 K , if surrounding temperature is 300 K is H . The rate of cooling at 900 K is:
(a) $\frac{16}{3} \mathrm{H}$
(b) 2 H
(c) 3 H
(d) $\frac{2}{3} \mathrm{H}$

Q 7. The area of a hole of heat furnace is $10^{-4} \mathrm{~m}^{2}$. It radiates 1.58×10^{5} calories of heat per hour. If the emissivity of the furnace is 0.80 , then its temperature is nearly:
(Stefan's constant $=5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}$)
(a) 1500 K
(b) 2000 K
(c) 2500 K
(d) 3000 K

hysicsaholics

Q 8. A sphere at temperature 600 K is placed in an environment of temperature 200 K . Its cooling rate is H . If its temperature reduced to 400 K then cooling rate in same environment will become:
(a) $\frac{3}{16} \mathrm{H}$
(b) $\frac{16}{3} \mathrm{H}$
(c) $\frac{9}{27} \mathrm{H}$
(d) $\frac{1}{16} \mathrm{H}$

Q 9. The radiant energy from the sun incident normally at the surface of earth is 20 K cal $\mathrm{m}^{-2} \mathrm{~min}^{-1}$. What would have been the radiant energy incident normally on the earth, if the sun had a temperature twice of the present one
(a) $160 \mathrm{~K} \mathrm{cal} \mathrm{m}^{-2} \mathrm{~min}^{-1}$
(b) $40 \mathrm{~K} \mathrm{calm} \mathrm{m}^{-2} \mathrm{~min}^{-1}$
(c) $320 \mathrm{~K} \mathrm{cal} \mathrm{m}^{-2} \mathrm{~min}^{-1}$
(d) $80 \mathrm{~K} \mathrm{calm}^{-2} \mathrm{~min}^{-1}$

Q 10. If the initial temperatures of metallic sphere and disc, of the same mass, radius and nature are equal, then the ratio of their rate of cooling in same environment will be
(a) $1: 4$
(b) $4: 1$
(c) $1: 2$
(d) $2: 1$

Q 11. Two spheres of radii in the ratio 1:2 and densities in the ratio 2:1 and of same specific heat, are heated to same temperature and left in the same surrounding. The rate of cooling will be in the ratio
(a) $2: 1$
(b) $1: 1$
(c) $1: 2$
(d) $1: 4$

Answer Key

Q. 1 c	$0.2 \mathrm{~d}$	Q. 3 a	Q. 4 c	Q. 5 a
Q. 6 a	Q. 7 c	Q. 8 a	Q. 9 c	Q. 10 d
Q. 11 b				

